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Abstract
We investigate a class of quantum symmetries of the perturbed cat map which
exist only for a subset of possible values of Planck’s constant. The effect of
these symmetries is to change the spectral statistics along this positive-density
subset. The symmetries are shown to be related to some simple classical
symmetries of the map.

PACS numbers: 05.45.Mt, 03.65.−w
Mathematics Subject Classification: 81Q50, 81S05

1. Introduction

It has been recognized that quantum maps represent a useful model for the investigation of
spectral properties of quantum systems with a chaotic classical limit. It is believed that in such
systems the chaotic nature of the dynamics leaves a ‘fingerprint’ on the quantum spectrum in
the form of correlations. This is in contrast to systems with an integrable dynamical system
at the classical limit, for which the quantum energy levels are expected to be uncorrelated [6].
In the chaotic case, the correlations are expected to be the same as those in the eigenvalues
of large random matrices [8, 9] with the same symmetries as the system under consideration.
This behaviour is universal in the sense that it appears to be true for large classes of very
diverse chaotic (mostly hyperbolic) systems. It has been observed numerically, and in part
analytically, for chaotic billiards, geodesic flow on compact surfaces with negative curvature,
quantum graphs and quantum maps, with a small number of non-generic exceptions (such as
systems with strong arithmetical properties) [3, 7, 17, 20, 23].

This universal behaviour permits the study of systems that can be physically quite unusual,
such as quantum maps, in order to gain a clearer understanding of more physically relevant
systems. A quantum map is a quantum counterpart of an area-preserving map on the 2-torus
which is viewed as a phase space. Examples, references and a detailed review of the relevant
theory are given in [12]. A quantum map is a unitary operator acting on an N-dimensional state
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space, where the compact phase space restricts the allowed values of Planck’s constant to be
of the form h̄ = (2πN)−1 for N ∈ N. This operator is also sometimes called the propagator,
and it can be represented in a suitable basis as an N × N matrix. The most famous examples
are the hyperbolic automorphisms, which were also the subject of the first study of quantum
maps [19]. They are (more or less) popularly known as cat maps, and the quantum version as
quantum cat maps. They form the basis of the model in the present paper.

Returning, for a moment, to generalities for a quantization of a chaotic map, the random
matrix hypothesis suggests that correlations in the spectrum of eigenvalues should mirror
those of the appropriate ensembles of unitary matrices, the so-called circular ensembles2 [26].
Following the work of Berry and Robnik [5, 29], the following picture emerged. Given a
quantum map with propagator U, if there exists an antiunitary transformation W satisfying
WUW−1 = U−1, then W is said to be an antiunitary symmetry of U. In this case, there is
a basis in which U is symmetric, so one expects the correlations in the spectrum to be the
same as those of the circular orthogonal ensemble (COE) of symmetric unitary matrices. To
be mathematically precise, one can conjecture that in the limit N → ∞ statistics of a fixed,
finite, number of eigenvalues converge to those of matrices from the COE averaged over the
ensemble. (We describe one such indicator of correlations in spectra, the nearest-neighbour
distribution, in appendix A.) If no such W exists then we consider in place of the COE, the
circular unitary ensemble (CUE) of unrestricted unitary matrices. In fact, the CUE coincides
with the probability space formed by the compact group U(N) taken with normalized Haar
measure.

A typical example of antiunitary symmetry is quantized time reversal (which classically
maps the torus point (q, p) to (q,−p)). This is nothing more than complex conjugation, which
is easily seen to be antiunitary. But even in systems with broken time-reversal symmetry,
provided there exists some other antiunitary symmetry, the spectral statistics will still be
those of the COE. A prominent example of this ‘false T breaking’ occurs in Aharonov–Bohm
billiards for certain parameter values [5].

The random matrix conjectures above presuppose that the maps possess no other relevant
symmetries, which would be other non-trivial unitary operators commuting with U. Verifying
that this is the case can be a difficult task. Usually, each symmetry of the quantum propagator
corresponds to a quantization of a classical symmetry of the map. However, it is now
understood that in the case of (unperturbed) cat maps there is, for fixed N, a large collection of
non-trivial matrices that commute with the quantum propagator U [21, 24]. These symmetries
are tricky to handle because they do not have a classical limit; they are not related to any
classical symmetry of the system and are called pseudo-symmetries or Hecke operators. The
presence of a large number of symmetries is responsible for the strong failure of the random
matrix conjecture in these models.

Under certain circumstances, small non-linear perturbations of the cat maps can be
quantized, and the perturbations are sufficient to break the pseudo-symmetries. That is to
say that these extra symmetries possessed by the unperturbed propagator are not present in
the perturbed propagator, and the quantum spectrum becomes of random matrix type. But it
is known that this does not always happen. If the perturbation is badly chosen, some of the
pseudo-symmetries can survive perturbation. This has a number of consequences. The most
striking is in the case where a perturbation is chosen that breaks time-reversal symmetry of the
map. If the perturbation leaves intact an antiunitary pseudo-symmetry, then the quantum map
has a antiunitary symmetry that is not obvious from the classical symmetries. The spectrum
will look like the COE, when one would rather expect it to be typical of the CUE if only

2 Probability spaces of matrices are referred to as ensembles.
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Figure 1. The nearest-neighbour spacing distribution for the quantum propagator of the map (1)
(boxes) with κ = 0.01, for N = 2998 (left) and N = 2996 (right). The curves are the nearest-
neighbour spacing densities for the COE and for a superposition of two independent COE spectra
(right plot only).

classical symmetries were taken into account [21]. Thus, it is impossible to decide to which
universality class a given system belongs, based only on knowledge of its classical symmetries.

In this paper, we report on a class of quantum symmetries of non-linear shear-perturbed
quantum cat maps which exist only for certain values (a positive-density subset) of N. The
effect of these symmetries is to change the spectral statistics of the map for these values of
N. As we will see, these symmetries have a very natural classical interpretation, and they
are different from the Hecke symmetries previously discussed. Not all of the symmetries we
construct are new; some were previously noted in [21] although with the emphasis on using
them to build antiunitary symmetries. In the present work, we develop their properties and
effects on spectral statistics in more detail. Another recent example of a quantum map whose
spectral statistics depend strongly on the choice of N was given in [18].

Our investigation was motivated by the following numerical experiments. Figure 1 shows
two simulations of nearest-neighbour spacing distribution (see appendix A) for the eigenvalues
of the quantum propagator of the map(

q

p

)
�→

(
6 5
7 6

)(
q

p

)
+

κ

2π

(
5
6

)
cos(2πq) mod 1. (1)

The map (1) is a shear perturbation of a cat map (see below for the details of the quantization).
This map has time-reversal symmetry, and hence an antiunitary symmetry, so according to
the random matrix conjecture we expect that the spacing distribution of eigenangles of the
propagator will converge to that of the COE as N → ∞. For N = 2998 we see good
agreement with the COE curve, but for N = 2996 we see that the distribution is very far from
that of the COE. In fact, it appears to be very close to the distribution of a superposition of
two independent COE spectra.

In figure 2 is shown the nearest-neighbour spacing distribution for N = 3006 and
N = 3008 for the map(

q

p

)
�→

(
4 9
7 16

) (
q

p

)
+

κ

2π

(
4
7

)
cos(2πp) +

κ

2π

(
9

16

)
cos(2πq + κ cos(2πp)) mod 1.

(2)
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Figure 2. The nearest-neighbour spacing distribution for the quantum propagator of the map (2)
(boxes) with κ = 0.01, for N = 3006 (left) and N = 3008 (right). The curves are the nearest-
neighbour spacing densities for the CUE and for a superposition of two independent CUE spectra
(right plot only).
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Figure 3. The nearest-neighbour spacing distribution for the quantum propagator of the map (3)
(boxes) with κ = 0.01, for N = 3003. The curves are the nearest-neighbour spacing densities for
a Poisson (uncorrelated) process and for the COE.

This more complicated map is a composition of a cat map with two shears, and was chosen
as an example without antiunitary symmetry [21], so one would expect to see CUE statistics.
For N = 3006 the agreement is good, but for N = 3008 the distribution appears closer to that
of a superposition of two CUE spectra.

The final numerical picture that we seek to explain is given in figure 3 which shows the
nearest-neighbour spacing distribution for N = 3003 for the map(

q

p

)
�→

(
12 13
13 14

)(
q

p

)
+

κ

2π

(
13
14

)
cos(2πq) mod 1. (3)

As with the map (1), this map has time-reversal symmetry, so one should compare with the
statistics of the COE. However, from the plot, the actual distribution of spacings appears to be
somewhat closer to the level spacing distribution of events from a Poisson process, which is
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the conjectured level spacing distribution for classically integrable (so strongly non-chaotic)
dynamical systems [6].

In section 3, we offer explanations for the numerics observed in these figures.

2. The model and results

The first quantization of a map was given by Hannay and Berry [19] who considered the linear
map A : T2 → T2 defined by

A

(
q

p

)
:=

(
A11 A12

A21 A22

) (
q

p

)
mod 1. (4)

As usual, we abuse notation by referring to A both as the map on the torus and the 2×2 matrix
which represents it. In order to preserve continuity and area, the elements of A should be
integers and the determinant should be unity. The dynamics of A will be hyperbolic provided
that |tr A| > 2, which we assume from now on. A map of this form is called a (generalized)
cat map and it represents the canonical example of an Anosov system [2].

A technical point to note is that in order to be able to quantize the maps we restrict A to
be of one of the following forms:

A =
(

even odd
odd even

)
or A =

(
odd even
even odd

)
. (5)

The classical dynamics of such automorphism of the torus possess strong arithmetic
feature as a direct consequence of the linearity of the map. This, in particular, implies a linear
structure for the stable and unstable manifolds and also a lattice-like structure for the periodic
orbits that, in this case, coincides exactly with the set of rational points on T2. Elementary
algebraic number theory constitutes a natural framework for the exploration of the classical
properties of the map [27].

We will consider perturbations of this linear map by composing with a time κ > 0 flow
of a global Hamiltonian H(q, p) on T2.

Assume H to be a real function of the torus of the form

H(q, p) =
∑

n,m∈Z

anm sin 2π(nq + mp) + bnm cos 2π(nq + mp),

with rapidly decaying coefficients anm and bnm. Then, H induces a vector field XH =(
dH
dp

,− dH
dq

)
on T2 and a corresponding Hamiltonian flow φt : T2 → T2, φ0(q, p) = (q, p).

We now consider the time t = κ > 0 a perturbative parameter and let Aκ := A ◦ φκ .
It is known [1, 2] that there exists a κmax > 0, which depends on A and H, such that

for values of κ ∈ [0, κmax), the map Aκ is still an Anosov map of the torus and moreover it
is C0-conjugate with the linear map A. Namely, for each κ fixed, there exists a continuous
function �κ on T2 such that �−1

κ ◦ A ◦ �κ = Aκ . In particular, this implies that both the rigid
spatial structure and the Lyapunov exponents of the periodic orbits can change drastically, but
the global topological entropy remains constant.

In this paper, we consider the particular perturbations for which the Hamiltonian function
H depends only on one coordinate. In this case, the corresponding Hamiltonian flow gives
rise to non-linear shears. More precisely, assume, for example,

H(q) =
∑
n∈Z

an sin(2πnq) + bn cos(2πnq).

It is then easy to see that the corresponding Hamiltonian flow at time κ is of the form

Pκ

(
q

p

)
:=

(
q

p + κf (q)

)
, (6)
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a shear in momentum, where

f (q) = −dH

dq
.

Similarly, a Hamiltonian of the form

H(p) =
∑
m∈Z

am sin(2πmp) + bm cos(2πmp)

generates a shear in position

Qκ

(
q

p

)
:=

(
q + κg(p)

p

)
, (7)

with g(p) = dH
dp

.
We now turn to the quantum dynamics. As has been mentioned, the quantum propagator

for the classical map A can be represented by an N × N matrix U. The components in the
standard (position) basis can be written down explicitly in terms of the elements of A [19].
To be more precise, the form of the propagator also depends on the reduction of A12 and N
by their greatest common divisor. We denote the reduced quantities N ′ := N/gcd(N,A12)

and A′
12 := A12/gcd(N,A12). Then, for a cat map of the form (5), the kj th element of U is

given by

Ukj =
(

A12

N

)1/2

exp

(
π i

A12N
(A11j

2 − 2jk + A22k
2)

)
G

(
N ′A11, A

′
12,

2(A11j − k)

gcd(N,A12)

)
,

(8)

where G is a number-theoretical function related to Gauss averages. It is defined for coprime
integers a and b by

G(a, b, c) := lim
M→∞

1

2M

M∑
m=−M

exp
(π i

b
(am2 + cm)

)
. (9)

This function can be expressed in a closed form [19]. If ab + c is not an even integer, then the
average converges to 0. Otherwise,

G(a, b, c) = P(a, b)T (a, b, c), (10)

where

P(a, b) :=




1√
b

(a

b

)
exp

(−iπ

4
(b − 1)

)
, b odd,

1√
b

(
b

a

)
exp

( iπa

4

)
, b even,

(11)

and

T (a, b, c) :=




exp

(−iπa

b
(a\b)2(c/2)2

)
, ab even,

exp

(−4iπa

b
(4a\b)2c2

)
, ab odd.

(12)

In (11), only the notation
(

a
b

)
premultiplying the exponential denotes the Jacobi symbol of

number theory, although this function does not play any part in the following analysis; the
notation (a\b) refers to the inverse of a modulo b—that is, the integer x such that ax ≡ 1
(mod b). Since a and b are coprime, this is determined uniquely.
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It is possible to quantize maps more general than those of the forms (5), if one introduces
quantum boundary conditions [10, 22], but we do not consider this here.

The quantizations of the shears are easy to construct [4], since they are κ-time Hamiltonian
flows. In the case of Pκ , for example, the quantum propagator P̂ κ is a diagonal matrix with

(P̂ κ)kj = δkj exp(2π iNκH(k/N)). (13)

For the shear Qκ in position, we can most easily construct the propagator by changing to
momentum coordinates and finding a diagonal matrix in this representation. The change of
basis matrix is the discrete Fourier transform F , where

Fkj := 1√
N

exp

(−2π ikj

N

)
.

The quantized shear in position is Q̂κ , where

Q̂κ = F−1DκF (14)

and Dκ is a diagonal matrix constructed as for P̂ κ above, this time looking for the H = H(p)

such that g(p) = H ′(p).
We denote again the composition of the map A with the two independent Hamiltonian

flows by Aκ, where κ := (κq, κp) is the vector of strengths of the individual perturbations

Aκ := A ◦ Pκp ◦ Qκq

and the corresponding quantum propagator V = V (A, κ, f, g) is the product of the
propagators of the individual maps

V = UP̂ κpQ̂κq . (15)

If we impose some more restrictions on the Fourier coefficients of H, we can gain some
extra symmetries of the shears that, as we will see below, explain our numerical observations.
In fact, note that if

H(q) =
∑
r∈Z

ar sin(2π(2r + 1)q) + br cos(4πrq), (16)

then H(q) = H
(

1
2 − q

)
, i.e. f

(
1
2 − q

) = −f (q).
Our main results follow, to be proved in section 4. We describe certain circumstances

for which operators commuting with V for a subset of values of N can be constructed. These
operators are given explicitly in terms of their actions on the standard (position) basis vectors
denoted as {ej }N−1

j=0 .
For brevity, we will often use the notation e(x) := e2π ix and eN(x) := e(x/N).

Theorem 1. Let the shears Pκp and Qκq be generated by Hamiltonians of the form (16) (for
the Hamiltonian which generates Qκq replace q by p in (16)). Then, if N is even, we can define
an operator Ŵ by its action on the j th standard basis vector:

Ŵej := e(j/2)eN/2−j . (17)

Then, if N is divisible by 4, ∀κq, κp � 0:

ŴV = V Ŵ,

where V = UP̂ κpQ̂κq .

Note that the conditions of theorem 1 place no restrictions on A other than that it be of
the chessboard form (5).



5902 M Degli Esposti and B Winn

We will also prove theorem 2, which for certain choices of A and only one perturbation
in momentum, demonstrates the existence of some symmetries, without any restriction on the
Hamiltonian generating Pκ .

Theorem 2. Consider the unperturbed map A of the form (5) such that there exists an s > 1
with s | gcd(A12, A22 − 1) if A12 is odd, or 2s | gcd(A12, A22 − 1) if A12 is even. Then, for
N = sM for any M ∈ N and any 1 � r < s, the operator R̂r/s commutes with V = UP̂ κ for
any choice of function H(q) generating Pκ and any κ > 0, where R̂β acts by

R̂βej := e(βj)ej . (18)

Before going into the proofs of the theorems, we first interpret the results.

3. Interpretations and explanation of the numerical results

We first point out that, assuming random matrix behaviour, theorem 1 explains the numerical
pictures in figures 1 and 2. The Hamiltonian generating the shears in momentum in (1) and
(2) is

H(q) = −1

4π2
sin(2πq), (19)

and for the shear in position in (2) the Hamiltonian is

H(p) = 1

4π2
sin(2πp). (20)

Both (19) and (20) are members of the class (16). Theorem 1 implies that if N is divisible
by 4, there exists a Ŵ which commutes with V , and hence they can be jointly diagonalized.
Since Ŵ 2 = I , the only eigenvalues of Ŵ are ±1, and we can split the eigenvectors of V into
two classes depending on how they transform under Ŵ . These classes are independent and so
if one looks at the spectrum as a whole, we see a superposition of two random matrix spectra
for these values of N.

In general, one expects to see deviations from a single random matrix spectrum whenever
there are extra symmetries of V , such as the examples constructed in theorems 1 and 2.
The situation is analogous in quantum billiard problems to that where the billiard table has
some symmetry, for example, a reflection symmetry (see, for example, [28]). In this case, the
presence of symmetry would be obvious from the geometry of the problem. The fact that the
examples we find only exist for a certain subset of values of N makes them noteworthy.

In examples where theorem 2 applies, the spectrum will decompose into s blocks, since
the operator R̂r/s is of order s. This explains the statistics observed in figure 3. The map (3)
is such an example with s = 13, so the spectral statistics approach those of a superposition of
13 COE spectra and not Poisson statistics. Equation (A.12) indicates how the level spacing
density of a large number of random matrix spectra approaches that of Poisson processes, so
these two curves are very close (see figure A1), and are not distinguishable at the level of
accuracy of the numerics in figure 3. So theorem 2 helps us to interpret the numerics correctly.
In fact, we can find a choice of map A and values of N for which s can be arbitrarily large, i.e.
the nearest-neighbour spacing density can be made arbitrarily close to the exponential density.
Note, however, that we cannot use theorem 2 to produce a subsequence of N for which the
nearest-neighbour density converges to the exponential density for a fixed map A.

We are able to offer a classical interpretation of the operators constructed in theorems 1
and 2. The operator R̂r/s is a quantization of the simple translation of T2 given by

Rr/s

(
q

p

)
:=

(
q

p + r
s

)
, (21)
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which is an exact quantization provided that s | N . For a detailed treatment of these translations,
see [13, 25]. Clearly, Rr/s commutes with Pκ for any choice of shear, and if s| gcd(A12, A22−1)

it is easy to check that Rr/s is a classical symmetry of A.
The map Ŵ in theorem 1 is a quantization of a composition of two translations, with

inversion. Let

W

(
q

p

)
:=

(
1
2 − q

1
2 − p

)
. (22)

Then, for N even Ŵ is an exact quantization of W . For any chessboard (5) A,W is a symmetry,
and for H satisfying (16), W is a symmetry of the generated shear in position, or momentum,
and so it follows that W commutes with Aκ.

4. Proof of the main results

The heart of theorem 1 is the following proposition.

Proposition 3. Let N be divisible by 4. Then, the matrix elements of U transform as

e

(
j − k

2

)
U(N/2−k)(N/2−j) = Ukj . (23)

The proof of proposition 3 relies on a direct calculation, using elementary number theory,
and it can be found in appendix B.

Proof of theorem 1. We prove that Ŵ commutes with each of the matrices multiplied in (15)
to give V . The simplest to show is P̂ κp . We first observe that the inverse of Ŵ acts by

Ŵ−1ej = e

(
−1

2

(
N

2
− j

))
eN/2−j . (24)

By assumption H satisfies

H(q) = H
(

1
2 − q

)
. (25)

We consider the action on the j th basis vector.

Ŵ−1P̂ κpŴej = e(j/2)Ŵ−1P̂ κp eN/2−j

= e(j/2)e

(
NκpH

(
1

2
− j

N

))
Ŵ−1eN/2−j

= e

(
NκpH

(
j

N

))
ej , using (25),

= P̂ κp ej , (26)

proving that Ŵ−1P̂ κpŴ = P̂ κp .
The proof that Ŵ commutes with U depends on proposition 3.

Ŵ−1UŴej = e(j/2)Ŵ−1UeN/2−j

=
N−1∑
r=0

e

(
j

2

)
Ur,(N/2−j)Ŵ

−1er

=
N−1∑
r=0

e

(
j

2
− 1

2

(
N

2
− r

))
Ur,(N/2−j)eN/2−r ;



5904 M Degli Esposti and B Winn

then we re-index the sum by substituting k = N/2 − r ,

=
N−1∑
k=0

e

(
j − k

2

)
U(N/2−k)(N/2−j)ek

=
N−1∑
k=0

Ukj ek, using proposition 3,

= Uej . (27)

Finally, we note that the discrete Fourier transform also transforms in the same way as U.
That is,

F(N/2−k)(N/2−j) = 1√
N

eN

(
−

(
N

2
− k

)(
N

2
− j

))

= 1√
N

e

(
−N

4
+

k + j

2

)
Fkj . (28)

So, since N is divisible by 4, then e
(

j−k

2

)
F(N/2−k)(N/2−j) = Fkj , and F commutes with Ŵ in

a proof like the above. From (14) we see that this is enough to show that Ŵ commutes with
Q̂κq , and hence finally with V . �

Proof of theorem 2. It is obvious that R̂r/s commutes with P̂ κ since they are both represented
by diagonal matrices.

To show that R̂r/s commutes with the propagator of the unperturbed map U, we look at
the matrix elements of R̂−1

r/sUR̂r/s ; in the usual position basis, the kj th entry is

e
(
− r

s
(k − j)

)
Ukj . (29)

We will show that for every j, k either Ukj = 0 or k ≡ j (mod s), thereby proving that
R̂−1

r/sUR̂r/s = U .
If Ukj 
= 0, then we must have that the third argument of the function G in (8) is an integer,

say 2(A11j−k)

gcd(N,A12)
= m. Rearranging we get

k − j = (A11 − 1)j − m

2
gcd(N,A12). (30)

We show that s divides both terms on the right-hand side of (30). Since s | A12, it follows from
A11A22 − A12A21 = 1 that

A11A22 ≡ 1 (mod s). (31)

Also, since s | (A22 − 1), we have

A22 ≡ 1 (mod s). (32)

Subtracting (32) from (31), we get

(A11 − 1)A22 ≡ 0 (mod s), (33)

but s and A22 are coprime so we must have s | (A11 − 1).
If N ′A11A

′
12 is even, then m is even, so that to finish we need only show that

s | gcd(N,A12). This follows from the assumptions that s | A12 and s | N .
On the other hand, if N ′A11A

′
12 is odd, then m is odd and we need to show that

s | gcd(N,A12)/2. By assumption s | A12/2, and since A12 and N contain exactly the same
power of 2 in their prime factorizations (we know this because N ′A′

12 is odd), s | N implies
that s | N/2.

So, in all cases, s
∣∣m

2 gcd(N,A12) and we are done. �
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5. Conclusions

In this paper, we have described how certain classical symmetries for the perturbed cat maps
can be quantized to give quantum symmetries for certain values of the inverse Planck constant
N and effect the spectral statistics of the quantum model.

The symmetries we have constructed are unrelated to the Hecke operators previously
studied [21, 24] which have no classical interpretation. Our symmetries have a very simple
classical origin and were first noted in [21]. In fact, classical symmetries of these types are
very numerous for the unperturbed map A. One can replace the point

(
1
2 , 1

2

)
in (22) with any

fixed point of A. If the Hamiltonians are chosen so that the shears commute with this new
map, then there will be, for certain values of N, a corresponding quantum symmetry. That Ŵ

is a symmetry for every quantizable cat map (for the correct choices of N) is because
(

1
2 , 1

2

)
is

a fixed point of every chessboard map (5).
We mention that our results do not depend on the perturbation strength κ . Indeed,

extending κ far beyond κmax, we still see the same spectral behaviour, even if this is
somewhat unphysical because the perturbed map is then no longer conjugate to the unperturbed
one.

We finally mention the implications of these results for a semi-classical theory of
spectral fluctuations for these systems, which is one goal of current research in quantum
chaology.

In the explicit examples we have given and in the possible other examples mentioned
above, we have explained how certain subsequences of N can give spectral statistics different to
those along the main subsequence. Any semi-classical theory for these maps must therefore not
only predict the behaviour along the main subsequence—which (conjecturally) is convergence
to a single random matrix spectrum of the correct universality class—but also the limits along
the subsequences for which extra symmetry exists. Alternatively, to avoid these symmetries,
one must restrict attention to subsequences avoiding values of N for which these symmetries
are present. But this set has a positive density (at least 1/4). Since the symmetries we have
constructed can only exist for composite values of N, in order to be completely sure of avoiding
them, it would be necessary to consider the N → ∞ limit along N which are prime numbers,
a density zero set of N.

Alternatively, to look for convergence along the full set of N ∈ N in future analytical
studies, the perturbation and the unperturbed map should be chosen so that none of the
symmetries found are present. In this case, it should be noted that (16) gives a non-small class
of perturbations to avoid, in particular it includes the simplest and most common perturbation
used in applications, that given by (19). Also, the simplest perturbation to perform is a single
shear in momentum. But theorem 2 then places a restriction on the matrices A that should be
used, since the symmetry R̂r/s will commute with any shear in momentum.

Figure 3 illustrates the dangers of misleading numerics in the presence of a considerable
number of symmetries.

Our results do not contradict the random matrix conjecture, but they do reveal further
complications in the search for a semi-classical theory of spectral statistics of perturbed cat
maps. The effects at the level of the spectral form factor will form the basis of a forthcoming
work [14].
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Appendix A. Nearest-neighbour distribution

In this appendix, we briefly describe one of the most common spectral statistics used to
measure the correlations of quantum spectra.

We assume that we have a sequence of real numbers, which we sometimes call levels
(λj )

∞
j=1, ordered so that 0 � λ1 � λ2 � · · ·, and mean spacing ρ−1, that is,

lim
N→∞

#{j : λj < N}
N

= ρ. (A.1)

In order to compare different sequences (λj ), we first ‘standardize’ them by rescaling so that
ρ = 1. Then, a typical quantity to investigate is the nearest-neighbour spacing density P(s)

which is defined by

lim
N→∞

1

N

N∑
j=1

h(λj+1 − λj ) =
∫ ∞

0
h(s)P (s) ds, (A.2)

if such a P(s) exists for some class of test functions h(s).
Usually, we compare the sequence of normalized levels of a quantum spectrum with a

sequence of eigenvalues of an ensemble of random matrices. In this case, the quantity P(s)

is averaged with respect to the probability measure of the ensemble before the limit N → ∞
is taken. The closed forms of the nearest-neighbour density for ensembles of random matrices
can be given in terms of Painlevé functions [16], but for numerical studies, the Wigner surmises
give a good numerical approximation. For the circular orthogonal ensemble, it reads

P COE(s) ≈ πs

2
e−πs2/4, (A.3)

and for the circular unitary ensemble,

P CUE(s) ≈ 32s2

π2
e−4s2/π . (A.4)

If the points λj are ordered event times of a Poisson process—so completely
uncorrelated—then the nearest-neighbour spacings are exponentially distributed (see e.g. [15],
section I.4);

P Poisson(s) = e−s . (A.5)

A.1. Nearest-neighbour spacing density for a superposition of independent spectra

We now consider the case where the sequence (λj ) is formed by superimposing n independent
sets of points with the same given spectral statistics, where the fraction of levels coming from
the kth component in the superposition is ρk . This means that the mean level spacing of this
component considered in isolation is ρ−1

k .
Denote by P(s) the nearest-neighbour spacing density of the superimposed spectrum,

scaled to have mean spacing 1, and by P n(s) the density for the resulting spectrum. In what
follows, we implicitly assume that P(s) can be represented by a bounded function, decaying
rapidly as s → ∞. This is certainly the case for random matrix ensembles. A formula for
P n(s) in terms of P(s) appears to have been first given in the appendix to [30]. An alternative
argument leading to the same formula is given in appendix A.2 of [26].

Given

E(s) :=
∫ ∞

0
xP (x + s) dx, (A.6)
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Figure A1. A comparison of the nearest-neighbour distribution for a superposition of 13
independent COE spectra, and the exponential density for Poisson events. Inset: the difference
P COE,13(s) − P Poisson(s).

Then, P n(s) is given by

P n(s) = 	(s)


 n∑

k=1

ρ2
k

(
P(ρks)

E(ρks)
− E′(ρks)

2

E(ρks)2

)
+

(
n∑

k=1

ρk

E′(ρks)

E(ρks)

)2

 , (A.7)

where

	(s) :=
n∏

k=1

E(ρks). (A.8)

As an example, for a superposition of two equally weighted spectra, we have

P 2(s) = 1

2
P

( s

2

)
E

( s

2

)
+

1

2
E′

( s

2

)2
. (A.9)

We can get approximations to the spectral statistics of a superimposition of two COE
(resp. CUE) sequences by substituting the Wigner surmise (A.3) (resp. (A.4)) into (A.9).
We find, using (A.6),

ECOE(s) ≈ 1 − erf

(
s
√

π

2

)
(A.10)

and

ECUE(s) ≈ e−4s2/π + s erf

(
2s√
π

)
− s. (A.11)

Substituting (A.10) and (A.11) into (A.9) gives the functions plotted as the curves in the plots
on the right in figures 1 and 2.

In the case when all ρk are equal to 1/n, it is shown in [26, 30] that

lim
n→∞ P n(s) = e−s . (A.12)

The intuitive explanation is quite simple: in a superposition of a very large number of
independent sequences, with high probability a given level and its neighbour will be from
different sequences, so the behaviour would be expected to be the same as for uncorrelated
levels (cf equation (A.5)). The rate of convergence is fast enough that even for relatively low
n, the difference between the superimposed spectra and Poisson can be difficult to distinguish
by eye. As an illustration, we present figure A1 which shows an example with n = 13.
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Appendix B. Proof of proposition 3

The proof of proposition 3 is elementary, but rather long. It is split into two parts, depending
on the parity of the product N ′A11A

′
12. For the most part, the proof involves repeated use of

the identity

A11A22 − A12A21 = 1, (B.1)

to reduce resulting expressions. Note that (B.1) implies that A11 (and A22) is coprime to A12.

Proof of proposition 3. To simplify we rewrite for fixed A and N,

Ukj = P̃E(k, j)g(k, j), (B.2)

where the prefactor P̃ contains all the factors that do not depend on j, k, and

E(k, j) := e

(
1

2NA12
(A11j

2 − 2jk + A22k
2)

)
(B.3)

and

g(k, j) := T

(
N ′A11, A

′
12,

2(A11j − k)

gcd(N,A12)

)
. (B.4)

We first assume that N ′A11A
′
12 is even. Then, we only need consider those j, k for which

2(A11j−k)

gcd(N,A12)
is an even integer. To see this note that if it is not an even integer then g(k, j) = 0,

and we need only to check that this is inherited when we replace k and j with N/2 − k and
N/2 − j . Making this substitution,

2

gcd(N,A12)

(
A11

(
N

2
− j

)
−

(
N

2
− k

))
= N(A11 − 1)

gcd(N,A12)
− 2(A11j − k)

gcd(N,A12)
. (B.5)

If A12 is even, then A11 −1 is even, and oddity is preserved by the transformation (B.5), giving
g(N/2 − k,N/2 − j) = 0. On the other hand, if A12 is odd, then 2 � gcd(N,A12) and if
2(A11j−k)

gcd(N,A12)
is not even, then it is not an integer (we obviously only need to consider the case

gcd(N,A12) > 1), so here we also have g(k, j) = 0.
From (B.3), we easily get

e

(
j − k

2

)
E

(
N

2
− k,

N

2
− j

)
= E(k, j)e

(
(−A11 + A12 + 1)

j

2A12
(B.6)

+
A11 + A22 − 2

8A12
N + (−A22 − A12 + 1)

k

2A12

)
.

Then, we write k = A11j − C gcd(N,A12) for some C ∈ Z. After doing this, and using (B.1)
several times, we get

e

(
j − k

2

)
E

(
N

2
− k,

N

2
− j

)
= E(k, j)e

(
(A12 + 1 − A11A22 − A11A12)

j

2A12

+
A11 + A22 − 2

8A12
N − (−A22 − A12 + 1)

C

2A′
12

)

= E(k, j)e

(
A12(1 − A21 − A11)

j

2A12

+
A11 + A22 − 2

8A12
N − (−A22 − A12 + 1)

C

2A′
12

)
,
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using A11A22 − A21A12 = 1,

= E(k, j)e

(
A11 + A22 − 2

8A12
N + (A22 + A12 − 1)

C

2A′
12

)
. (B.7)

We now look at how g transforms. Denoting again k = A11j − C gcd(N,A12), then

g(k, j) = e

(−N ′A11

2A′
12

(N ′A11\A′
12)

2C2

)
, (B.8)

and using (B.5),

g

(
N

2
− k,

N

2
− j

)
= g(k, j)e

(−N ′A11

2A′
12

(N ′A11\A′
12)

2 N ′(A11 − 1)

2

(
N ′(A11 − 1)

2
− 2C

))

= g(k, j)e

(
−N ′A11

2A′
12

(N ′A11\A′
12)

2

(
N ′(A11 − 1)

2

)2
)

× e

(
N ′A11

2A′
12

(N ′A11\A′
12)

2N ′(A11 − 1)C

)
. (B.9)

We simplify by noting that N ′(N ′A11\A′
12) ≡ A22 (mod A′

12). In fact, let y =
N ′(N ′A11\A′

12). Then,

A11y ≡ 1 (mod A′
12) (B.10)

by definition. But also, from (B.1),

A11A22 = 1 + A21 gcd(N,A12)A
′
12

≡ 1 (mod A′
12). (B.11)

Subtracting gives

A11(y − A22) ≡ 0 (mod A′
12), (B.12)

and since A11 and A′
12 are coprime, then A′

12 | (y − A22).
Thus, we have, for some m ∈ Z,

e

(
N ′A11

2A′
12

(N ′A11\A′
12)

2N ′(A11 − 1)C

)
= e

(
A11(A11 − 1)

2A′
12

(A22 + mA′
12)

2C

)

= e

(
A11(A11 − 1)

2A′
12

A2
22C

)
,

using the fact that A11(A11 − 1) is even,

= e

(
(1 + A12A21)(A11 − 1)

2A′
12

A22C

)

= e

(
(A11 − 1)A22

2A′
12

C

)
,

using the fact that A22(A11 − 1) is even,

= e

(
1 + A12A21 − A22

2A′
12

C

)
. (B.13)
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We can similarly treat

e

(−N ′A11

8A′
12

N ′2(N ′A11\A′
12)

2(A11 − 1)2

)
= e

(−NA11

8A12
(A22 + mA′

12)
2(A11 − 1)2

)

= e

(−NA11

8A12
(A11A22 − A22 + mA′

12(A11 − 1))2

)

= e

(−NA11

8A12
((1 − A22)

2 + 
A′
12)

)
(B.14)

where, after inserting (B.1), 
 is the integer defined by

(1 − A22 + A12A21 + mA′
12(A11 − 1))2 =: (1 − A22)

2 + 
A′
12. (B.15)

If A11 is even, then 4 � gcd(N,A12), so using the assumption that 4 | N , we see that the
term involving 
 disappears from (B.14). If A11 is odd, then this term will still vanish provided
we can be sure that

N ′m2A′
12

2
(A11 − 1)2

8A′
12

∈ Z. (B.16)

But since (A11 − 1) is even, and we are in the regime N ′A11A
′
12 even, then this follows

immediately. So, following (B.14), we have that

e

(−N ′A11

8A′
12

N ′2(N ′A11\A′
12)

2(A11 − 1)2

)
= e

(−NA11

8A12

(
1 − 2A22 + A2

22

))

= e

( −N

8A12
(A11 − (2 − A22)(1 + A21A12))

)

= e

(−N

8A12
(A11 + A22 − 2 − (2 − A22)A12A21)

)

= e

( −N

8A12
(A11 + A22 − 2)

)
, (B.17)

since (2 − A22)A21 is even, and 4|N .
Finally, collecting together (B.7), (B.9), (B.13) and (B.17) and substituting into (23), after

some cancellations we get

e

(
j − k

2

)
UN/2−k,N/2−j = e

(
A12(1 + A21)

2A′
12

C

)
Ukj

= e

(
gcd(N,A12)(1 + A21)

2
C

)
Ukj

= Ukj , (B.18)

where the last line follows since either A21 is odd, or otherwise 2 | gcd(A12, N).
We now consider the case where N ′A11A

′
12 is odd. Note that this implies A11 is odd.

Since the chessboard form gives that A12 then must be even, for A′
12 to then be odd implies

that 2 | gcd(N,A12).
As before, (B.6) holds. But now we need to consider 2(A11j−k)

gcd(N,A12)
odd. Otherwise

g(k, j) = 0, and since the first term on the right-hand side of (B.5) is even, also
g(N/2 − k,N/2 − j) = 0. So we can assume that

k = A11j − L

2
gcd(N,A12), (B.19)
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for some odd L ∈ Z. Substituting into (B.6) yields

e

(
j − k

2

)
E

(
N

2
− k,

N

2
− j

)
= E(k, j)e

(
A11 + A22 − 2

8A12
N + (A22 + A12 − 1)

L

4A′
12

)
.

(B.20)

In this regime we have the second form of T given in (12), so

g

(
N

2
− k,

N

2
− j

)
= e

(−2N ′A11

A′
12

(4N ′A11\A′
12)

2(N ′(A11 − 1) − L)2

)

= g(k, j)e

(−2N ′A11

A′
12

N ′2(4N ′A11\A′
12)

2(A11 − 1)2

)

× e

(
4A11(A11 − 1)

A′
12

N ′2L(4N ′A11\A′
12)

2

)
. (B.21)

Again, we simplify, noting that

4N ′(4N ′A11\A′
12) ≡ A22 (mod A′

12)

= A22 + mA′
12 (B.22)

for some m. In fact, m must be odd, because both A22 and A′
12 are odd. So,

e

(
4A11(A11 − 1)

A′
12

N ′2L(4N ′A11\A′
12)

2

)
= e

(
A11(A11 − 1)

4A′
12

L(A22 + mA′
12)

2

)

= e

(
A11(A11 − 1)

4A′
12

L
(
A2

22 + m2A′2
12

))

= e

(
A11(A11 − 1)

4A′
12

LA2
22 +

A11 − 1

4

)
, (B.23)

where the last line follows because all of A11,m,L and A′
12 are odd. It now follows through

repeated use of (B.1) that

e

(−4A11(A11 − 1)

A′
12

N ′2L(4N ′A11\A′
12)

2

)
= e

(
1 + A12A21 − A22

4A′
12

L

)
e

(
A11 − 1

4

)
.

(B.24)

Also,

e

(−2N ′A11

A′
12

N ′2(4N ′A11\A′
12)

2(A11 − 1)2

)
= e

(−N ′A11

8A′
12

(A22 + mA′
12)

2(A11 − 1)2

)

= e

(−N ′A11

8A′
12

(A11 − 1)2A2
22 − (A11 − 1)2

8

)

= e

(−N ′A11

8A′
12

(1 − A22 + A12A21)
2 − (A11 − 1)2

8

)

= e

(−N ′A11

8A′
12

(1 − A22)
2 − (A11 − 1)2

8

)

= e

(
−N(A11 + A22 − 2)

8A12

)
e

(
− (A11 − 1)2

8

)
, (B.25)

Collecting together (B.20), (B.21), (B.24) and (B.25), we get

e

(
j − k

2

)
U(N/2−k),(N/2−j) = Ukje

(
− (A11 − 1)2

8

)
e

(
A12(1 + A21)

4A′
12

L

)
e

(
A11 − 1

4

)

= Ukje

(
− (A11 − 1)(A11 − 3)

8

)
e

(
gcd(N,A12)

4

)
. (B.26)
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We now note that precisely one of A11 − 1 and A11 − 3 is divisible by 4 and the other divisible
by 2, cancelling 8 in the denominator of the first exponential on the right-hand side of (B.26).
If 4 | N , and N ′ is odd, then we must have 4 | gcd(N,A12), so the factor on the right-hand
side of (B.26) is unity, and we are done. �
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Poincaré 58 323–41
[11] Degli Esposti M and Graffi S (ed) 2003 The Mathematical Aspects of Quantum Maps (Lecture Notes in Physics

vol 618) (Berlin: Springer)
[12] Degli Esposti M and Graffi S (ed) 2003 The Mathematical Aspects of Quantum Maps (Lecture Notes in Physics

vol 618) (Berlin: Springer) pp 49–90
[13] Degli Esposti M, O’Keefe S and Winn B 2005 A semi-classical study of the Casati–Prosen triangle map

Nonlinearity 18 1073–94
[14] Degli Esposti M and Winn B work in progress
[15] Feller W 1971 An Introduction to Probability Theory and its Applications vol 2 (New York: Wiley)
[16] Forrester P J and Witte N S 2000 Exact Wigner surmise type evaluation of the spacing distribution in the bulk

of the scaled random matrix ensembles Lett. Math. Phys. 53 195–200
[17] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Random-matrix theories in quantum physics: common

concepts Phys. Rep. 299 189–425
[18] Giraud O, Marklof J and O’Keefe S 2005 Intermediate statistics in quantum maps J. Phys. A: Math. Gen. 37

L303–11
[19] Hannay J H and Berry M V 1980 Quantization of linear maps on the torus—Fresnel diffraction by a periodic

grating Physica D 1 267–90
[20] Keating J P 1991 The cat maps: quantum mechanics and classical motion Nonlinearity 4 277–307
[21] Keating J P and Mezzadri F 2000 Pseudo-symmetries of Anosov maps and spectral statistics Nonlinearity 13

747–75
[22] Keating J P, Mezzadri F and Robbins J M 1999 Quantum boundary conditions for torus maps Nonlinearity 12

579–91
[23] Kottos T and Smilansky U 1999 Periodic orbit theory and spectral statistics for quantum graphs Ann. Phys. 274

76–124
[24] Kurlberg P and Rudnick Z 2000 Hecke theory and equidistribution for the quantization of linear maps of the

torus Duke Math. J. 103 47–77
[25] Marklof J and Rudnick Z 2000 Quantum unique ergodicity for parabolic maps Geom. Funct. Anal. 10 1554–78
[26] Mehta M L 1991 Random Matrices (New York: Academic)
[27] Percival I and Vivaldi F 1987 Arithmetical properties of strongly chaotic motions Physica D 25 105–30
[28] Sieber M and Steiner F 1990 Quantum chaos in the hyperbola billiard Phys. Lett. A 148 415–20
[29] Robnik M 1986 Antiunitary symmetries and energy level statistics Quantum Chaos and Statistical Nuclear

Physics (Lecture Notes in Physics vol 263) ed T H Seligman and H Nishioka (Berlin: Springer) pp 120–30
[30] Rosenzweig N and Porter C E 1960 ‘Repulsion of energy levels’ in complex atomic spectra Phys. Rev. 120

1698–714


	1. Introduction
	2. The model and results
	3. Interpretations and explanation of the numerical results
	4. Proof of the main results
	5. Conclusions
	Acknowledgments
	Appendix A. Nearest-neighbour distribution
	. A.1. Nearest-neighbour spacing density for a superposition of independent spectra

	Appendix B. Proof of proposition 3

	References

